Неперервність та функція - шпора

Оцінка
Скачати

ФУНКЦІЙ ТЕОРІЯ, розділ математики, що займається вивченням властивостей різних функцій. Теорія функцій поділяється на дві області: теорію функцій дійсного змінного і теорію функцій комплексного змінного, відмінність між якими настільки велика, що звичайно їх розглядають як дві різні галузі. Не вдаючись в деталі, можна сказати, що по суті мова йде про відмінність, з одного боку, в детальному вивченні основних понять математичного аналізу (таких, як неперервність, диференціювання, інтегрування і т.п.), а з іншого боку, в теоретичному розвитку аналізу конкретних функцій, представлених степенними рядами. Одним з досягнень теорії функцій дійсної змінної стало створення теорії інтегрування.

ФУНКЦІЇ ДІЙСНОГО ЗМІННОГО

Функції, що використовуються в елементарному аналізі, задаються формулами. Їх графіки звичайно можна накреслити, не відриваючи олівець від паперу, як, наприклад, графік функції у = sinx, або вони складаються з окремих шматків, що володіють цією властивістю, як, наприклад, графік функції у = tgx

Спочатку, коли загальнодоведене визначення неперервності було відсутнє, всі функції, графіки яких складалися з однієї частини, вважалися обов'язково незперервними. Наприклад, вважалося, що незперервною можна вважати функцію, графік якої не може лежати по обидві сторони від прямої, не перетинаючи її. Інакше кажучи, неперервна функція, приймаючи які-небудь два значення, неодмінно приймає і всі проміжні значення. Однак неважко знайти функції, які, хоч і задані формулами і володіють вказаною властивістю, не мають властивостей  безперервних. Наприклад, функція f(х)= sin(1/х) при х?  0 і f(0)= 0  володіє властивістю, про яку йде мова, однак, на думку багатьох, не є неперервною. Можна побудувати ще більш дивні приклади функцій, що приймають дійсне значення на будь-якому, навіть  малому інтервалі, але проте  не є безперервними. Графіки таких функцій не тільки неможливо накреслити, але іноді навіть  чітко уявити. З іншого боку, роботи Ж.Фурье (1768 1830) і П.Діріхле (1805 1859), пов'язані з рядами Фурье показали, що деякі явно розривні функції задаються формулами, принаймні,  якщо в число останніх включити нескінченні ряди.

Логічні труднощі, що виникли при цьому були поступово подолані за допомогою прийому, типового для теорії функцій: поняттям «функція» і «неперервність» були дані суворі визначення і досліджені витікаючі з них логічні висновки. Виявилося, що ці висновки не знаходяться відповідно точному до інтуїції, про що свідчать приведені приклади. Один з самих знаменитих прикладів такого роду був запропонований К.Вейерштрассом (1815 1897)   приклад безперервної, але функції, що ніде (ні в одній точці) не диференціюється.  У математика, що стикнувся з таким прикладом, може виникнути багато питань, наприклад, «У яких безперервних функцій існують похідні?», або «Як можна змінити поняття похідною, щоб воно стало застосовним до більшості безперервних функцій?», або «Якими додатковими властивостями володіють функції, що недиференціюються? ». Проблемами такого роду і займається теорія функцій дійсного змінного.

Перше, що потрібно від теорії функцій,   дати визначення поняття «функції». Функція   це правило, яке кожному числу (або кожній точці) з даної безлічі ставить у відповідність інше число, зване значенням функції в цій точці. Наприклад, одна функція ставить у відповідність кожному дійсному числу його квадрат, інша ставить у відповідність кожному позитивному дійсному числу його логарифм, третя функція ставить у відповідність кожному раціональному числу, записаному у вигляді нескоротного дробу, знаменник цього дробу. Всі названі функції мають різні області визначення; областю визначення функції називається безліч точок, на якій вона визначена.

Функція називається безперервної в точці, якщо будь-якому нескінченно малому приросту аргументу в цій точці відповідає нескінченно малий приріст функції. Функція, безперервна у всіх точках області визначення, називається безперервної. Наприклад, функція, що приймає в точці х значення x2, безперервна; але функція, що приймає в точці х значення, рівне найближчому до х цілого числа, не перевершуючого х, безперервної не є. Дійсно,  значення цієї функції змінюється стрибком з 0 на 1, коли х змінюється від значення, меншого 1/2 на сколь бажано малу величину, до значення, більшого 1/2, на сколь бажано малу величину. На формальній математичній мові можна сказати, що функція f, що приймає значення f(х), безперервна в точці у в тому випадку, якщо для будь-якого позитивного числа?  знайдеться таке число? , що для всіх точок х з області визначення f(х), що задовольняють умові ¦х   у¦ <? , виконується нерівність ¦f(х)   f(у)¦ <?.

Можна показати, що безперервні функції, областями визначення яких є підмножини безлічі дійсних чисел, володіють численними властивостями, деякі з яких інтуїтивно очевидні, а деякі   немає. Наприклад, сума або вироблення безперервних функцій також безперервні. Якщо безперервна функція в деякій точці позитивна, то завжди знайдеться досить мала її околиця, в якій вона залишиться позитивною. Якщо безперервна функція приймає в двох точках різні значення а і b, то в проміжних точках вона приймає всі значення, укладені між а і b. Із останньої властивості можна укласти, наприклад, що якщо розтягнутій гумці дати стиснутися таким чином, щоб вона залишалася прямолінійною (не провисала), то одна з точок на ній залишиться нерухомою.

Функції, з якими доводиться мати справу в математичному аналізі, як правило, всюди безперервні в області їх визначення, за винятком, бути може, окремих ізольованих точок. У той же час було побудовано багато прикладів різних функцій як розривних, так і немає, що володіють властивостями, що суперечать інтуїції.

Хоч сума двох безперервних функцій безперервна, а отже, безперервна і сума будь-якого кінцевого числа безперервних функцій, аналогічне твердження для нескінченних сум невірне. Наприклад, нескінченна сума



є періодичною (з періодом 2?) розривною функцією, що приймає значення 0 при х = 0 і (1/2)(?   x) в інтервалі від 0 до 2? (мал. 3). Для того, щоб ряд з безперервних функцій обов'язково мав безперервну суму, необхідні більш сильні умови, ніж збіжність в кожній точці загальної області визначення функцій. З іншого боку, межа безперервних функцій або повторна межа має всі основи вважатися формулою, і один з розділів теорії функцій займається проблемою з'ясування, якого роду функції представимы такими формулами. Згідно з класифікацією розривних функцій, запропонованої Р.Бером (біля 1899) безперервні функції належать 0-му класу, межі безперервних функцій належать 1-му класу і т.д. Функція, графік якої зображений на мал. 3, належить 1-му класу; функція

←Попередня Наступна→
1 2 3
Неперервність та функція - шпора 5 з 5 на основі 2 оцінок від 2 користувачів